



To: Christopher Sarro and Michael Evans

Ørsted

Sunrise Wind Export Cable Acoustic Telemetry Study

From: Dr. Bradley Peterson, Brianna Cahill and Brittney Scannell

Peterson Marine Community Ecology Lab

Stony Brook University, Southampton Marine Station, 239 Montauk Highway, Southampton, NY 11968

Bradley.Peterson@stonybrook.edu, Brianna.Cahill@stonybrook.edu,

Brittney.Scannell@stonybrook.edu,

Date: February 5th, 2024

Report on research efforts conducted during 2023 involving Ørsted Sunrise Wind acoustic telemetry deployments and elasmobranch tagging efforts off the south shore of Long Island, NY.

## **Receiver Deployments**

The original array placement proposal consisted of 28 receivers placed in a 7 x 4 gridded VPS array covering a depth range from 30 to 60 feet along the cable path centerline (Figure 1). This array was paired with a gated array composed of 3 lines spaced 5 km apart, each representing a west approach, an east approach, and the centerline of the cable (Figure 2). Each line comprised 10 receivers, each spaced 1 km apart and placed at depths from 150 to 180 feet. After meeting with local stakeholders, we cooperatively decided to narrow our study area to encompass the VPS array within the boundaries of 50 ft water, thereby minimizing interactions with commercial trawlers while still collecting fine-scale behavioral data.

Receivers (n = 32) were deployed using ropeless technology (Acoustic Release Buoys) in an 8 x 4 gridded receiver array in July 2022 (Figure 3) to minimize risks to marine mammals and other protected species. Initial receiver range testing confirmed 90% detection success at 350 m. During spring 2023, 22 receivers (of the deployed 32) were downloaded, resulting in 10 receivers lost. Seven of the lost receivers were positioned on the northernmost row. As such, we decided to remove the northernmost row of receivers and 8<sup>th</sup> column of receivers, with the intention of reducing the array to a 7 x 3 array (n = 21), though, one receiver (R3C8) was redeployed in the 8<sup>th</sup> column. In total, 22 receivers were deployed in spring 2023. Eleven receivers were downloaded in fall 2023, resulting in 11 receivers lost. Receivers positioned in the 8<sup>th</sup> column were not redeployed. A total of 21 receivers were redeployed within the array during fall 2023 (Figure 3).

Our team participated in the Fathom Positioning training in September 2023 and are actively processing these data. Using elasmobranch detections, 14,696 positions were calculated for the first positioning time period (7/30/2022 to 12/23/2022) during the first receiver deployment. Additionally, we were able to calculate the positions for some of the lost receivers (Figure 4). The lost receiver's sync tags were consistently detected within the first positioning time period (Figure 4A); however, the position of several receivers was inconsistent within the time period (e.g., R1C5, R1C6, R1C8, R2C6; Figure 4B), suggesting movement within the array.

## **Elasmobranch Fishing Activity**

Dusky shark (Carcharhinus obscurus)

During summer of 2023, 36 dusky sharks were caught on baited hook and line on the southern shore of Long Island, primarily around Fire Island and Moriches Reef (Figure 5). All individuals were released in good condition following surgical implantation of Innovasea V16 acoustic telemetry transmitters. Of the 36 dusky sharks, 16 were female ( $109.2 \pm 3.4$  cm; mean  $\pm$  standard error; Figure 6) and 20 were male ( $112.2 \pm 3.5$  cm). In total, 61 dusky sharks were acoustically tagged and 32 individuals were detected at the Sunrise Wind array (n = 23,764 detections). Using these detections, 4,088 positions were calculated within the surrounding area by dusky sharks and space use was determined using minimum convex polygons for 7/30/2022 to 12/23/2022 (Figure 7).

Sandbar shark (Carcharhinus plumbeus)

During summer of 2023, 8 sandbar sharks were caught on baited hook and line on the southern shore of Long Island, primarily around Fire Island and Moriches Reef. All individuals were released in good condition following surgical implantation of Innovasea V16 acoustic telemetry transmitters. Of the 8 sandbar sharks, 2 were female  $(154.0 \pm 13.0 \text{ cm})$  and 6 were male  $(139.8 \pm 5.1 \text{ cm})$ . In total, 14 sandbar sharks were acoustically tagged and 7 individuals were detected at the Sunrise Wind array (n = 1,807 detections). Using these detections, 44 positions were calculated within the surrounding area by sandbar sharks and space use was determined using minimum convex polygons for 7/30/2022 to 12/23/2022 (Figure 8).

Sand tiger shark (Carcharias taurus)

During summer of 2023, 19 sand tiger sharks were caught on baited hook and line on the southern shore of Long Island, primarily around Fire Island and Moriches Reef. All individuals were released in good condition following surgical implantation of Innovasea V16 acoustic telemetry transmitters. Of the 19 sand tiger sharks, 15 were female  $(186.0 \pm 7.3 \text{ cm})$  and 4 were male  $(177.8 \pm 22.7 \text{ cm})$ . In total, 44 sand tiger sharks have been acoustically tagged and 24 individuals have been detected at the Sunrise Wind array (n = 63,001 detections). Using these detections, 10,564 positions were calculated within the surrounding area by sand tiger sharks and space use was determined using minimum convex polygons for 7/30/2022 to 12/23/2022 (Figure 9).

Smooth dogfish (*Mustelus canis*)

During spring and summer of 2023, a total of 25 smooth dogfish were caught via bottom trawl or on hook and line along the southern shore of Long Island, spreading from Fire Island to Shinnecock Artificial Reef. All individuals were released in good condition following surgical implantation of Innovasea V16 acoustic telemetry transmitters. Of the 25 smooth dogfish, 15 were female ( $104.1 \pm 8.0$  cm) and 10 were male ( $87.0 \pm 2.5$  cm). To date, 50 smooth dogfish have been acoustically tagged and 10 individuals have been detected at the Sunrise Wind array (n = 2,379 detections); however, no positions were calculated for smooth dogfish.

Winter skate (Leucoraga ocellata)

We were largely unsuccessful at tagging winter skate during 2023. As such, we intend to place greater emphasis on trawl efforts to tag more during 2024. To date, we have one winter skate acoustically tagged that was not detected at the Sunrise Wind array.

#### **Additional Information**

Between funding provided by Ørsted and the NYS DEC, the Peterson Lab now maintains a receiver network of 120+ receivers around Long Island, NY (Figure 10). Therefore, not only do the tagged elasmobranchs provide insight into space-use around areas designated for offshore wind farm development, but they will also allow us to understand large-scale movements (i.e., migration), and monitor use and connectivity among NY's artificial reefs.

## **Outreach and Communication**

Using elasmobranch detections collected from the downloaded receivers, our team has given public outreach talks for the Nature Talk Series at Übergeek Brewing Company (Peterson) and Bridgehampton Natural History Museum's summer shark panel (Peterson and Scannell). While information pertaining to Ørsted-specific objectives were not discussed, analyzing these peripheral detections allowed our team to conduct outreach initiatives with the public and investigate analytical techniques at acoustic telemetry-focused conferences.

### **Future Objectives**

Moving forward, our priority is to finish analyzing animal positions within the array for the entire deployment timeframe. Additionally, we plan to process the sensor data (depth and temperature) from the tagged animals to assess 3D positioning within the array. Finally, we are actively assessing spatial modeling techniques (e.g., dynamic Brownian bridge movement models) to determine the most suitable method for these data.

## **Occupational Hazards**

Our team experienced no accidents or occupational hazards during 2023.

## **Figures**

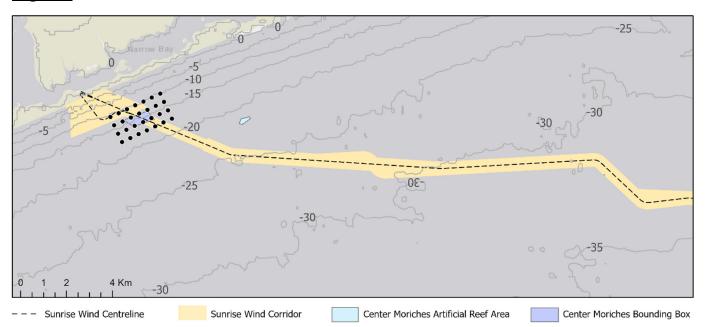



Figure 1: Original diagram of the near-shore, fine-scale positioning array. The array overlaps with the SRWEC route and includes four rows of seven receivers (28 receivers total) deployed approximately 400m apart to allow individual animals to be tracked with high spatial resolution. This array was slightly adjusted to have four rows of eight receivers (32 receivers total) following discussions with stakeholders.

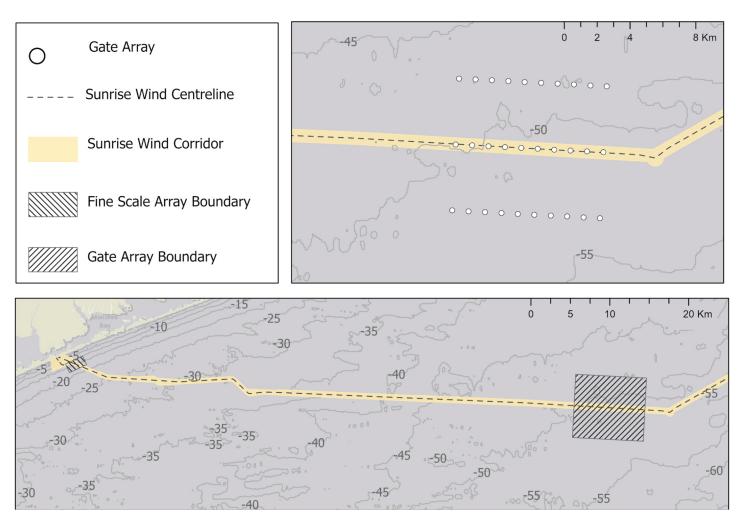



Figure 2: Diagram of the previous offshore receiver array that was renegotiated with local stakeholders to minimize undesired interactions with commercial trawlers.

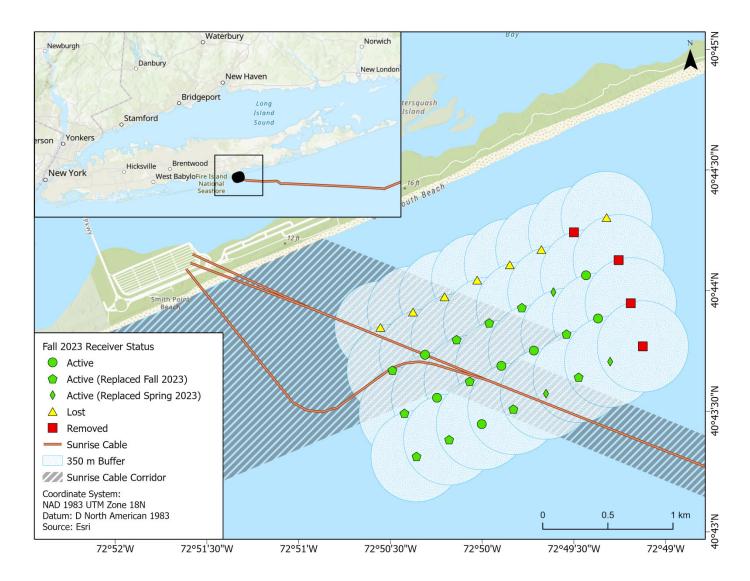



Figure 3: Sunrise wind receiver locations with the 90% detection success range (350 m). Receiver locations were collected immediately upon deployment. Colored symbology refers to status—green is active, red is removed, and yellow suggests the receivers were lost yet not replaced. Shape symbology of a pentagon, diamond or triangle suggest that a receiver was lost in that location, and therefore replaced with a new receiver. Both circle and square symbology suggest that no receivers were lost in the locations. The first row (northernmost) and  $8^{th}$  column (easternmost) were removed from the array, therefore leaving the 7 x 3 gridded array shown in green.

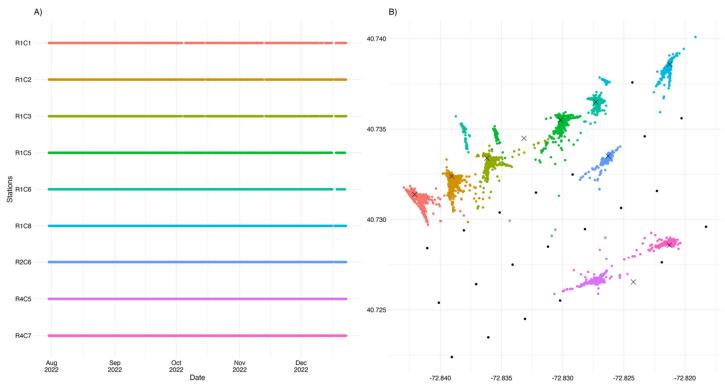



Figure 4: Reporting of A) detections by each receiver's internal sync tag over time within the first positioning time period (7/30/2022-12/23/2022), and B) the calculated positions by each receiver's internal sync tag. Colored symbology varies with station ID.

## **Shark Capture Locations**

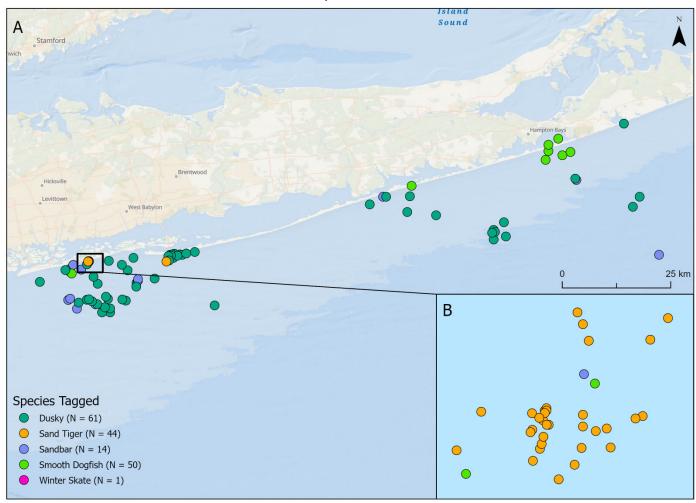



Figure 5: Capture locations for A) all tagged elasmobranchs and B) an inset map showing close proximity capture for sand tiger sharks. Fishing efforts primarily occurred outside of Fire Island, Moriches and Shinnecock Inlet.

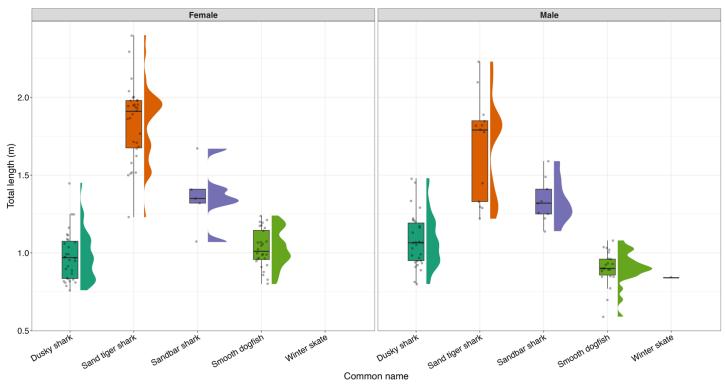



Figure 6: Size distributions of tagged animals by sex.

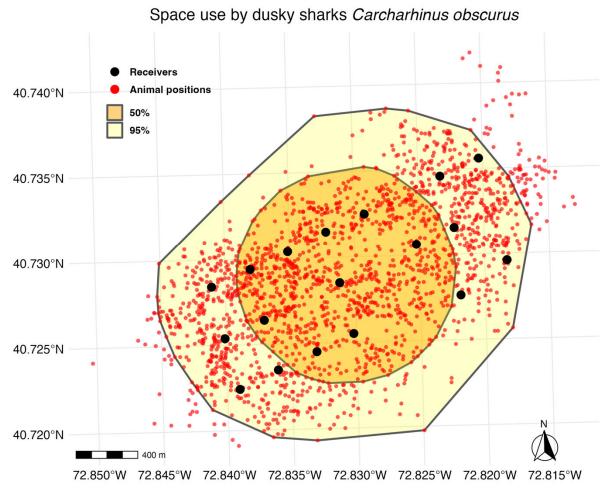



Figure 7: Space use around the Sunrise Wind Array by dusky sharks using minimum convex polygons. Red dots are the calculated animal positions using the Fathom Position software. Black dots refer to the downloaded receiver locations. The orange and yellow polygons suggest where the sharks spend 50% and 95% of their detected time, respectively. These positions and polygons are only calculated for 7/30/2022 to 12/23/2022.

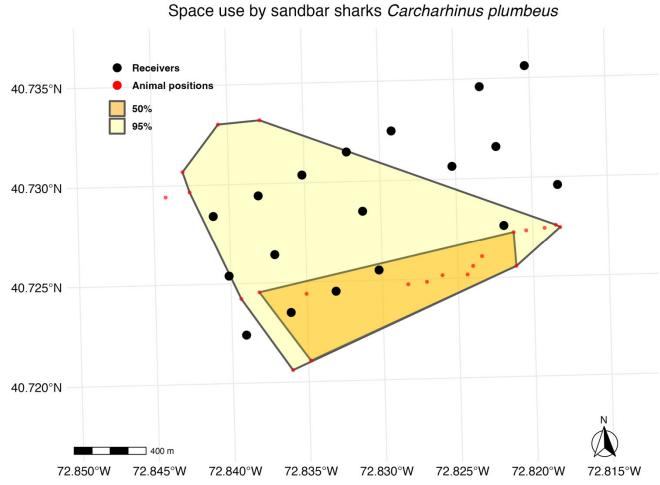



Figure 8: Space use around the Sunrise Wind Array by sandbar sharks using minimum convex polygons. Red dots are the calculated animal positions using the Fathom Position software. Black dots refer to the downloaded receiver locations. The orange and yellow polygons suggest where the sharks spend 50% and 95% of their detected time, respectively. These positions and polygons are only calculated for 7/30/2022 to 12/23/2022.

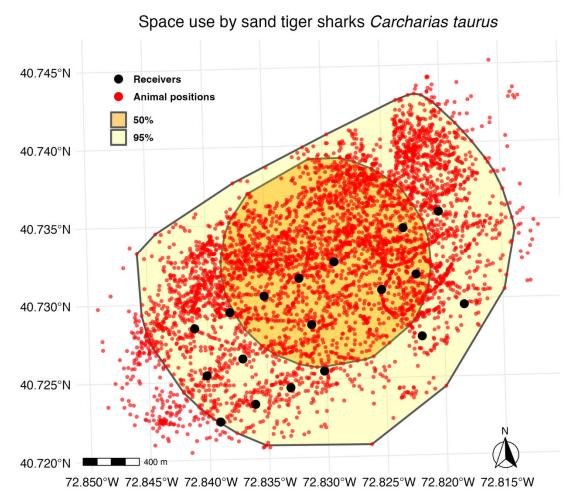



Figure 9: Space use around the Sunrise Wind Array by sand tiger sharks using minimum convex polygons. Red dots are the calculated animal positions using the Fathom Position software. Black dots refer to the downloaded receiver locations. The orange and yellow polygons suggest where the sharks spend 50% and 95% of their detected time, respectively. These positions and polygons are only calculated for 7/30/2022 to 12/23/2022

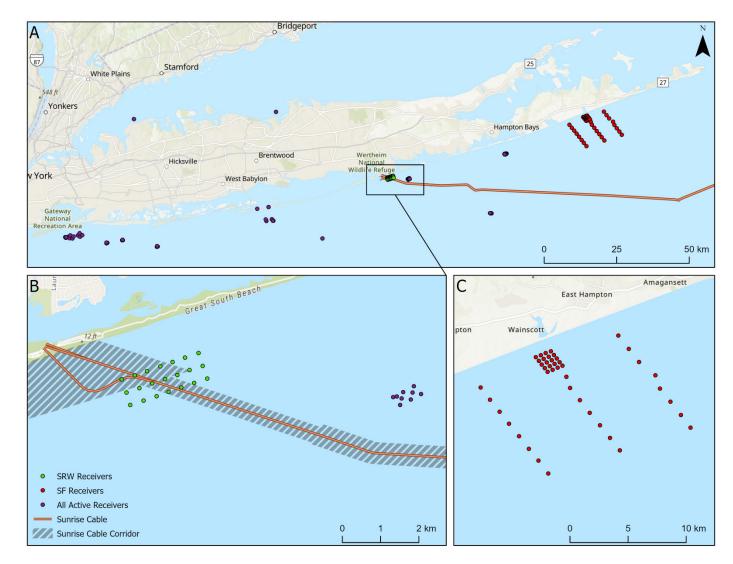



Figure 10: All receiver coverage around Long Island, NY maintained by Stony Brook University. Colored symbology shows receiver coverage for the Sunrise Wind project (green), South Fork (red) and artificial reef project (purple) maintained by the Peterson Lab.

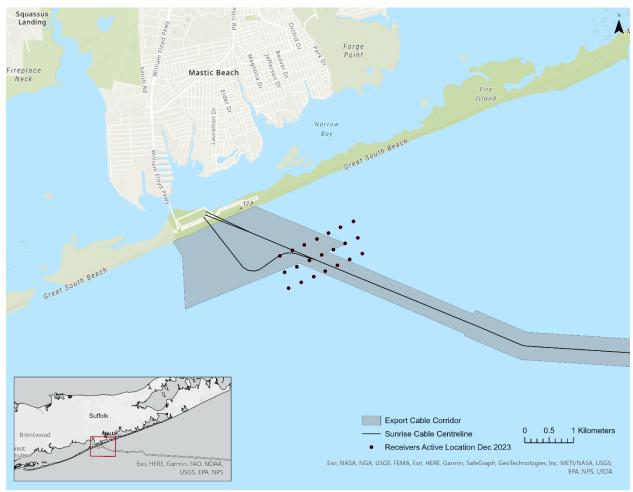
1. Annual Report: Sunrise Wind Telemetry Project- Horseshoe Crab and Lobster

2. Principle Investigator: Matthew Sclafani<sup>1</sup>

Project Partners: Robert Cerrato<sup>2</sup>, Justin Bopp<sup>1, 3</sup>

**Contributing Technicians:** Joe Costanzo <sup>1</sup>, Stephen Havens <sup>1</sup>, Kaitlin Morris <sup>1</sup>, Jordan Russo <sup>1</sup>

Cornell Cooperative Extension<sup>1</sup> 423 Griffing Ave., Suite 100 Riverhead, NY 11901-3071


School of Marine and Atmospheric Sciences<sup>2</sup> Stony Brook University Stony Brook, NY 11794

Michigan State University<sup>3</sup> 220 Trowbridge Rd East Lansing, MI 48824

**3. Project Term:** January 2023 through December 2023

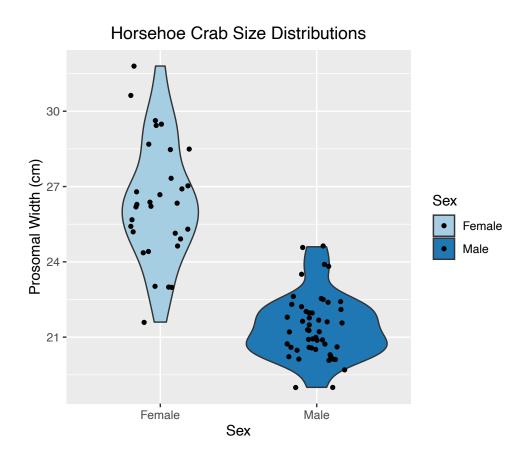
#### Introduction/Background

Cornell Cooperative Extension has been working with Stony Brook University to conduct a multi-year acoustic telemetry study to assess the potential impacts of the electromagnetic field (EMF) emitted by the Sunrise Wind Export Cable (SRWEC) on select migratory marine invertebrates. In collaboration with the Peterson Lab at Stony Brook University, a VEMCO VPS nearshore positional array was deployed in July 2022. This array was planned to be composed of 32 receivers and acoustic release buoys in an 8 x 4 pattern to reduce risks to local marine mammals, other protected species, and minimize interactions with commercial fisheries. Following the Spring 2023 download and subsequent issues recovering several receivers, the array was reduced from 32 receivers (four rows of eight) to 21 receivers (three rows of seven, Figure 1). There were 12 receivers recovered and downloaded in the fall of 2023. The positional array is designed to track the fine-scale movements of the targeted acoustically tagged fish and invertebrates, and to determine if there are any changes in behavior pre-and post-construction of the export cable.



**Figure 1.** Active locations of the receivers as of December 15, 2023. The array overlaps the SRWEC to study fine-scale behavior of target species in relation to the potential effects of the electromagnetic field emitted.

#### **Vessel Approval**


CCE began the process of meeting Orsted's Health and Safety requirements and receiving approvals for the following vessels used on this research project: the R/V Karen/June and the R/V Scout. The vessels were inspected and later approved by Orsted after all safety requirements were fulfilled and all safety equipment was obtained.

#### **Atlantic Horseshoe Crab Tagging Activity**

From January to December of 2023, a total of 125 adult Atlantic Horseshoe Crabs were caught by hand at various locations within Moriches Bay (Figure 2). Of the 125 tagged horseshoe crabs, 66 were female (prosomal width  $26.2 \pm 2.16$  cm) and 59 were male (prosomal width  $21.4 \pm 1.20$  cm, Table 1, Figure 3). The horseshoe crabs were tagged with V16 (69kHz, 80/160 delay interval) acoustic telemetry transmitters following the established protocol by Brousseau et al. (Brousseau et al. 2004) utilizing a Velcro harness and Zap-a Gap CA+ superglue. They were subsequently released the same day and in healthy condition at the center of the Sunrise acoustic array. As of the end of September all 125 allotted tags were successfully attached, and crabs released in the center of the array. After the fall receiver download, of the 150 crabs tagged and released since the beginning of the project, all 150 were detected within the array.

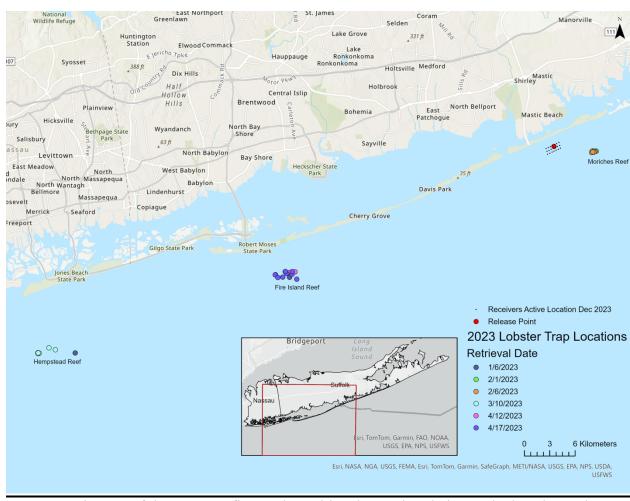


**Figure 2.** Diagram of the SRWEC fine-scale positional array in relation to the locations where horseshoe crabs were collected January to December 2023. The release location of tagged horseshoe crabs is in the center of the array (40.73050, -72.83018)



**Figure 3.** Size distribution of Atlantic horseshoe crab tagged from January to December 2023 for the Sunrise Wind Export Cable study. Female prosomal width  $26.2 \pm 2.16$  cm. Male prosomal width  $21.4 \pm 1.20$  cm

**Table 1.** Summary of Atlantic horseshoe crab tagged from January to December 2023 for the Sunrise Wind Export Cable study. Horseshoe crabs were caught by hand in Moriches Bay, tagged, and released in the center of the acoustic telemetry positioning array. Weight included any epibiont growth present on the carapace.


| Date    | Location           | Acoustic Tag ID | Button Tag ID | Sex    | Prosomal Width (cm) | Weight (kg)      |
|---------|--------------------|-----------------|---------------|--------|---------------------|------------------|
| 6/7/23  | Terrel County Park | A69-9001-55468  | 479175        | Female | 25.9                | 2.8              |
| 6/7/23  | Terrel County Park | A69-9001-55469  | 479124        | Female | 27.3                | 2.96             |
| 6/7/23  | Terrel County Park | A69-9001-55470  | 479173        | Male   | 21.4                | 1.26             |
| 6/7/23  | Terrel County Park | A69-9001-55471  | 513301        | Male   | 21.4                | 1.28             |
| 6/7/23  | Terrel County Park | A69-9001-55472  | 513302        | Female | 27.2                | 2.96             |
| 6/7/23  | Terrel County Park | A69-9001-55473  | 513303        | Male   | 22.4                | 1.44             |
| 6/7/23  | Terrel County Park | A69-9001-55474  | 513305        | Male   | 20.1                | 1.08             |
| 6/7/23  | Terrel County Park | A69-9001-55475  | 513304        | Male   | 20.5                | 0.82             |
| 6/7/23  | Terrel County Park | A69-9001-55476  | 513306        | Female | 25.3                | 2.32             |
| 6/7/23  | Terrel County Park | A69-9001-55477  | 513307        | Male   | 20.2                | 1.2              |
| 6/7/23  | Terrel County Park | A69-9001-55478  | 513308        | Female | 24.1                | 1.84             |
| 6/7/23  | Terrel County Park | A69-9001-55479  | 513309        | Male   | 21.6                | 1.02             |
| 6/7/23  | Terrel County Park | A69-9001-55480  | 513310        | Female | 28.1                | 3.2              |
| 6/7/23  | Terrel County Park | A69-9001-55481  | 513311        | Female | 30.7                | 4.48             |
| 6/7/23  | Terrel County Park | A69-9001-55482  | 513312        | Female | 23.8                | 1.68             |
| 6/7/23  | Terrel County Park | A69-9001-55483  | 513313        | Male   | 21.7                | 1.18             |
| 6/7/23  | Terrel County Park | A69-9001-55484  | 513314        | Female | 24.7                | 2.22             |
| 6/7/23  | Terrel County Park | A69-9001-55485  | 513315        | Female | 29.2                | 2.48             |
| 6/29/23 | Moriches Bay       | A69-9001-55486  | 513326        | Female | 24.3                | 2.36             |
| 6/29/23 | Moriches Bay       | A69-9001-55487  | 510434        | Female | 26.5                | 2.8              |
| 6/29/23 | Moriches Bay       | A69-9001-55488  | 513327        | Female | 23.3                | 2.56             |
| 6/29/23 | Moriches Bay       | A69-9001-55489  | 513317        | Female | 26.9                | 3.58             |
| 6/29/23 | Moriches Bay       | A69-9001-55490  | 513325        | Female | 26.9                | 3.06             |
| 6/29/23 | Moriches Bay       | A69-9001-55491  | 513322        | Female | 25                  | 2.48             |
| 6/29/23 | Moriches Bay       | A69-9001-55492  | 513321        | Female | 25.3                | 2.8              |
| 6/29/23 | Moriches Bay       | A69-9001-55493  | 513324        | Female | 25.4                | 2.3              |
| 6/29/23 | Moriches Bay       | A69-9001-55494  | 513323        | Male   | 20.8                | 1.5              |
| 6/29/23 | Moriches Bay       | A69-9001-55495  | 513320        | Female | 26.9                | 3.1              |
| 6/29/23 | Moriches Bay       | A69-9001-55496  | 513316        | Female | 28.2                | 3.4              |
| 6/29/23 | Moriches Bay       | A69-9001-55497  | 513319        | Female | 25.7                | 2.48             |
| 6/29/23 | Moriches Bay       | A69-9001-55498  | 513318        | Female | 26.4                | 2.92             |
| 6/29/23 | Moriches Bay       | A69-9001-55499  | 513329        | Female | 24                  | 2.38             |
| 6/29/23 | Moriches Bay       | A69-9001-55500  | 513328        | Female | 28.4                | 3.6              |
| 6/29/23 | Moriches Bay       | A69-9001-55501  | 513339        | Female | 29.8                | 3.9              |
| 6/29/23 | Moriches Bay       | A69-9001-55502  | 513340        | Female | 27.8                | 3.02             |
| 6/29/23 | Moriches Bay       | A69-9001-55503  | 513333        | Female | 24.6                | 2.34             |
| 6/29/23 | Moriches Bay       | A69-9001-55504  | 513334        | Female | 25.5                | 3.12             |
| 6/29/23 | Moriches Bay       | A69-9001-55505  | 513330        | Female | 26.4                | 2.58             |
| 6/29/23 | Moriches Bay       | A69-9001-55506  | 513337        | Female | 26.5                | 2.82             |
| 6/29/23 | Moriches Bay       | A69-9001-55507  | 513331        | Female | 27.9                | 3.04             |
| 6/29/23 | Moriches Bay       | A69-9001-55508  | 513332        | Female | 26.4                | 2.18             |
| 6/29/23 | Moriches Bay       | A69-9001-55509  | 513335        | Female | 23.9                | 2                |
| 6/29/23 | Moriches Bay       | A69-9001-55510  | 513336        | Female | 23                  | 1.64             |
| 6/29/23 | Moriches Bay       | A69-9001-55511  | 513338        | Female | 22                  | <sub>1.6</sub> 5 |

| 7/5/23 | Moriches Bay | A69-9001-55512 | 513341 | Male   | 21   | 1.1  |
|--------|--------------|----------------|--------|--------|------|------|
| 7/5/23 | Moriches Bay | A69-9001-55513 | 513276 | Male   | 21.3 | 1.1  |
| 7/5/23 | Moriches Bay | A69-9001-55514 | 513282 | Male   | 22.1 | 1.18 |
| 7/5/23 | Moriches Bay | A69-9001-55515 | 513279 | Male   | 22   | 1.44 |
| 7/5/23 | Moriches Bay | A69-9001-55516 | 513281 | Male   | 21.8 | 1.32 |
| 7/5/23 | Moriches Bay | A69-9001-55517 | 513280 | Male   | 20.9 | 0.98 |
| 7/5/23 | Pikes Beach  | A69-9001-52110 | 513277 | Male   | 23.8 | 1.42 |
| 7/5/23 | Pikes Beach  | A69-9001-52111 | 513278 | Male   | 22.6 | 1.14 |
| 7/5/23 | Pikes Beach  | A69-9001-52112 | 513283 | Female | 29.6 | 4.16 |
| 7/5/23 | Pikes Beach  | A69-9001-52113 | 513342 | Male   | 20.9 | 1.06 |
| 7/5/23 | Pikes Beach  | A69-9001-52114 | 513285 | Male   | 20.1 | 0.98 |
| 7/5/23 | Pikes Beach  | A69-9001-52115 | 513287 | Male   | 21.6 | 1.18 |
| 7/5/23 | Pikes Beach  | A69-9001-52116 | 513292 | Male   | 20.7 | 1.18 |
| 7/5/23 | Pikes Beach  | A69-9001-52117 | 513291 | Male   | 20.2 | 0.94 |
| 7/5/23 | Pikes Beach  | A69-9001-52118 | 513290 | Male   | 19.7 | 0.92 |
| 7/5/23 | Pikes Beach  | A69-9001-52119 | 513288 | Male   | 20.9 | 1.16 |
| 7/5/23 | Pikes Beach  | A69-9001-52120 | 513286 | Male   | 20.6 | 1.1  |
| 7/5/23 | Pikes Beach  | A69-9001-52121 | 513289 | Male   | 20.2 | 0.94 |
| 7/5/23 | Pikes Beach  | A69-9001-52122 | 513284 | Female | 24.6 | 2.52 |
| 7/5/23 | Pikes Beach  | A69-9001-52123 | 513294 | Male   | 21.7 | 1.3  |
| 7/5/23 | Pikes Beach  | A69-9001-52124 | 513297 | Male   | 21.8 | 2.52 |
| 7/5/23 | Pikes Beach  | A69-9001-52125 | 513299 | Female | 26.9 | 3.02 |
| 7/5/23 | Pikes Beach  | A69-9001-52126 | 513345 | Male   | 21.3 | 1.26 |
| 7/5/23 | Pikes Beach  | A69-9001-52127 | 513293 | Male   | 23.9 | 1.88 |
| 7/5/23 | Pikes Beach  | A69-9001-52128 | 513344 | Female | 29.4 | 4.2  |
| 7/5/23 | Pikes Beach  | A69-9001-52129 | 513343 | Female | 24.9 | 2.72 |
| 7/5/23 | Pikes Beach  | A69-9001-52130 | 513295 | Male   | 20.6 | 1.2  |
| 7/5/23 | Pikes Beach  | A69-9001-52131 | 513296 | Male   | 21.6 | 1.56 |
| 7/5/23 | Pikes Beach  | A69-9001-52132 | 513300 | Male   | 22   | 1.28 |
| 7/5/23 | Pikes Beach  | A69-9001-52133 | 513346 | Male   | 19   | 0.9  |
| 7/5/23 | Pikes Beach  | A69-9001-52134 | 513298 | Male   | 20.1 | 1    |
| 7/5/23 | Pikes Beach  | A69-9001-52135 | 458167 | Male   | 20.6 | 1.26 |
| 7/5/23 | Pikes Beach  | A69-9001-52136 | 513347 | Male   | 20.7 | 1.2  |
| 7/5/23 | Pikes Beach  | A69-9001-52137 | 513358 | Male   | 22.5 | 1.29 |
| 7/5/23 | Pikes Beach  | A69-9001-52138 | 513349 | Male   | 22.5 | 1.28 |
| 7/5/23 | Pikes Beach  | A69-9001-52139 | 513357 | Male   | 24.6 | 1.7  |
| 7/5/23 | Pikes Beach  | A69-9001-52140 | 513354 | Male   | 21.2 | 1.26 |
| 7/5/23 | Pikes Beach  | A69-9001-52141 | 513351 | Male   | 22.2 | 1.16 |
| 7/5/23 | Pikes Beach  | A69-9001-52142 | 513350 | Male   | 20.3 | 1.18 |
| 7/5/23 | Pikes Beach  | A69-9001-52143 | 513352 | Male   | 20.1 | 0.92 |
| 7/5/23 | Pikes Beach  | A69-9001-52144 | 513353 | Male   | 24.6 | 1.7  |
| 7/5/23 | Pikes Beach  | A69-9001-52145 | 513348 | Male   | 21.2 | 1.04 |
| 7/5/23 | Pikes Beach  | A69-9001-52146 | 513356 | Male   | 21.5 | 1.16 |
| 7/5/23 | Pikes Beach  | A69-9001-52147 | 513355 | Male   | 20.6 | 1    |
| 7/6/23 | Pikes Beach  | A69-9001-52148 | 513359 | Female | 28.5 | 3.02 |
| 7/6/23 | Pikes Beach  | A69-9001-52149 | 513368 | Male   | 20.5 | 0.86 |
| 7/6/23 | Pikes Beach  | A69-9001-52150 | 513367 | Female | 25.1 | 2.34 |
| 7/6/23 | Pikes Beach  | A69-9001-52151 | 513366 | Male   | 22.4 | 1.44 |
| 7/6/23 | Pikes Beach  | A69-9001-52152 | 513363 | Male   | 23.5 | 1.28 |
| 7/6/23 | Pikes Beach  | A69-9001-52153 | 513360 | Male   | 22.4 | 1.36 |
| 7/6/23 | Pikes Beach  | A69-9001-52154 | 513364 | Female | 27   | 2.92 |
| 7/6/23 | Pikes Beach  | A69-9001-52155 | 513361 | Female | 25.4 | 2.06 |


| 7/6/23<br>7/6/23 | Pikes Beach  | A69-9001-52156 | 513365 | Female  | 27.3 | 2.9  |
|------------------|--------------|----------------|--------|---------|------|------|
| 7/6/22           |              |                | 02000  | Ciliaic | 27.5 | 2.5  |
| 7/0/23           | Pikes Beach  | A69-9001-52157 | 513362 | Female  | 28.5 | 3.82 |
| 7/6/23           | Pikes Beach  | A69-9001-52158 | 513369 | Female  | 29.5 | 3.46 |
| 7/6/23           | Pikes Beach  | A69-9001-52159 | 513374 | Female  | 26.8 | 2.1  |
| 7/6/23           | Pikes Beach  | A69-9001-52160 | 513375 | Female  | 21.6 | 1.56 |
| 7/6/23           | Pikes Beach  | A69-9001-52161 | 513373 | Female  | 26.3 | 2.36 |
| 7/6/23           | Pikes Beach  | A69-9001-52162 | 513377 | Female  | 30.6 | 4.06 |
| 7/6/23           | Pikes Beach  | A69-9001-52163 | 513372 | Female  | 23   | 1.6  |
| 7/6/23           | Pikes Beach  | A69-9001-52164 | 513370 | Female  | 26.7 | 3.04 |
| 7/6/23           | Pikes Beach  | A69-9001-52165 | 513376 | Male    | 22.3 | 1.42 |
| 7/6/23           | Pikes Beach  | A69-9001-52166 | 513371 | Female  | 28.7 | 3.3  |
| 7/6/23           | Pikes Beach  | A69-9001-52167 | 513382 | Female  | 31.8 | 4.44 |
| 7/6/23           | Pikes Beach  | A69-9001-52168 | 513381 | Male    | 20.5 | 1.8  |
| 7/6/23           | Pikes Beach  | A69-9001-52169 | 513380 | Female  | 26.2 | 2.22 |
| 7/6/23           | Pikes Beach  | A69-9001-52170 | 513379 | Female  | 26.2 | 2.4  |
| 7/6/23           | Pikes Beach  | A69-9001-52171 | 513383 | Female  | 24.4 | 1.84 |
| 7/6/23           | Pikes Beach  | A69-9001-52172 | 513378 | Male    | 22   | 1.44 |
| 8/14/23          | Moriches Bay | A69-9001-52173 | 488527 | Male    | 20.1 | 0.8  |
| 8/14/23          | Moriches Bay | A69-9001-52174 | 488526 | Male    | 20.9 | 1.12 |
| 8/14/23          | Moriches Bay | A69-9001-52175 | 488537 | Female  | 25.7 | 2.48 |
| 8/14/23          | Moriches Bay | A69-9001-52176 | 488533 | Female  | 23   | 1.96 |
| 8/22/23          | Moriches Bay | A69-9001-52177 | 478097 | Female  | 23   | 2.5  |
| 8/22/23          | Moriches Bay | A69-9001-52178 | 478105 | Male    | 21.6 | 1.3  |
| 8/22/23          | Moriches Bay | A69-9001-52179 | 477797 | Female  | 26.4 | 2.18 |
| 8/23/23          | Moriches Bay | A69-9001-52180 | 478319 | Female  | 25.2 | 2.7  |
| 8/23/23          | Moriches Bay | A69-9001-52181 | 477798 | Female  | 26.3 | 3.08 |
| 8/23/23          | Moriches Bay | A69-9001-52182 | 477799 | Female  | 25.3 | 2.24 |
| 8/23/23          | Moriches Bay | A69-9001-52183 | 477800 | Male    | 19   | 0.98 |
| 8/23/23          | Moriches Bay | A69-9001-52184 | 478046 | Female  | 24.4 | 1.86 |

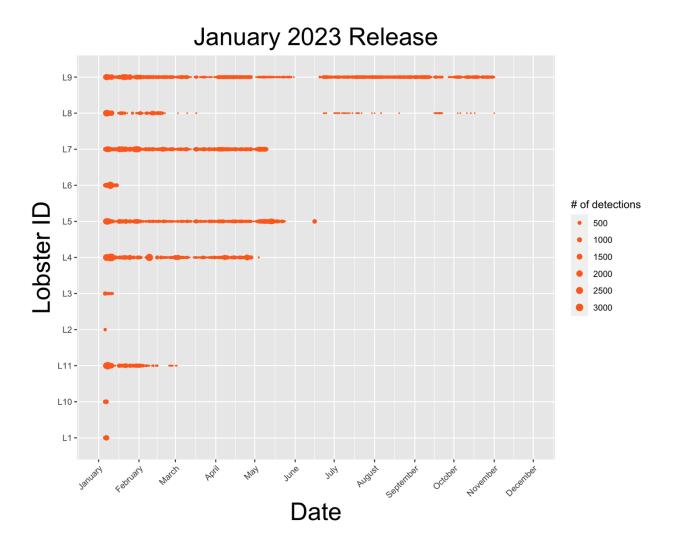
#### **American Lobster Tagging Activity**

From January through December of 2023, a total of 50 adult American lobsters were caught by conventional lobster traps at Hempstead Reef, Moriches Reef, and Fire Island Reef (Figure 4) with the aid of a lobsterman. Of the 50 tagged lobsters 25 were female (carapace length 92.4 ± 6.89 mm) and 25 were male (carapace length 102 ± 12.1 mm, Table 2, Figure 5). The lobsters were tagged with V13 (69kHz, 80/160 delay interval) acoustic telemetry transmitters following the established protocol by Brousseau et al. (Brousseau et al. 2004) utilizing a Velcro harness and Zap-a Gap CA+ superglue. They were subsequently released the same day and in healthy condition at the center of the Sunrise acoustic array (40.73050, -72.83018). After the fall receiver download, of 50 lobsters released, all 50 were detected on a receiver within the array. In late fall of 2023, a recreational lobsterman reported re-capturing three lobsters with tags on them at the Moriches Reef. However, he only relayed tag information (i.e. Tag IDs) for one of those lobsters. This lobster was detected within the array from early February until late May 2023, after which no more detections were observed in the study area.

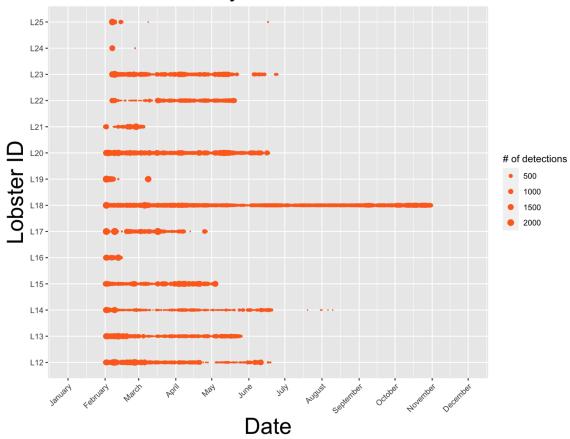


**Figure 4.** Diagram of the SRWEC fine-scale positional array in relation to the locations where lobster traps were set and retrieved from January to December 2023. The release location of tagged lobsters was in the center of the array (40.73050, -72.83018)

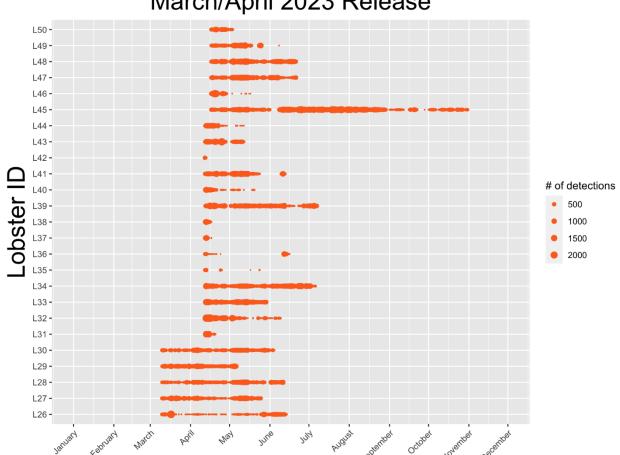


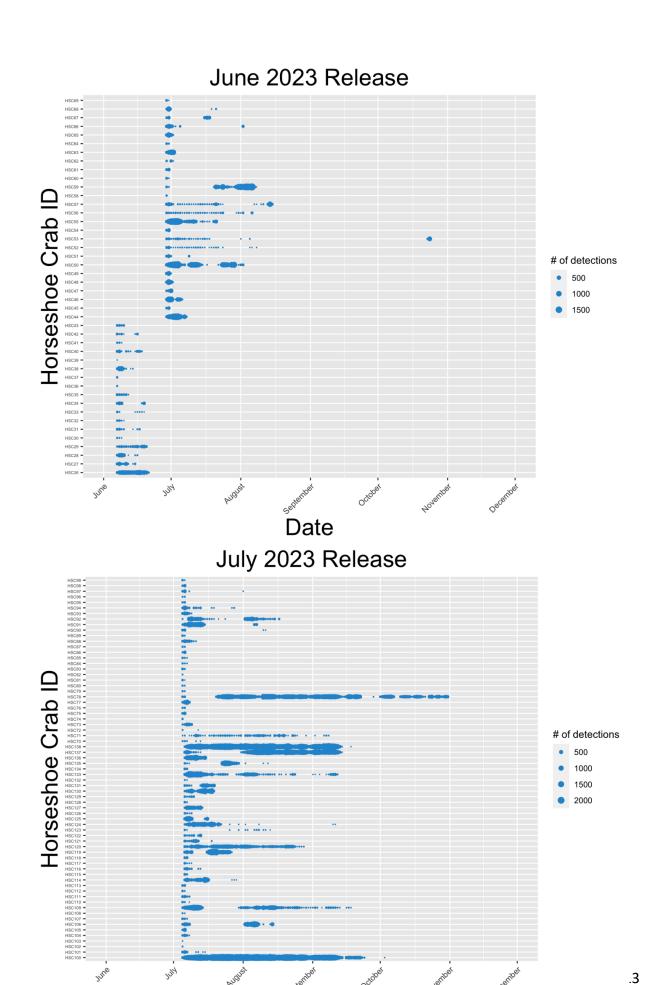

**Figure 5.** Size distribution of American lobsters tagged from January to December 2023 for the Sunrise Wind Export Cable study. Female carapace length  $92.4 \pm 6.89$  mm. Male carapace length  $102 \pm 12.1$  mm

**Table 2.** Summary of American lobster tagged from January to December 2023 for the Sunrise Wind Export Cable study. Lobster were trapped at Hempstead, Moriches, and Fire Island Reef, tagged, and released in the center of the array

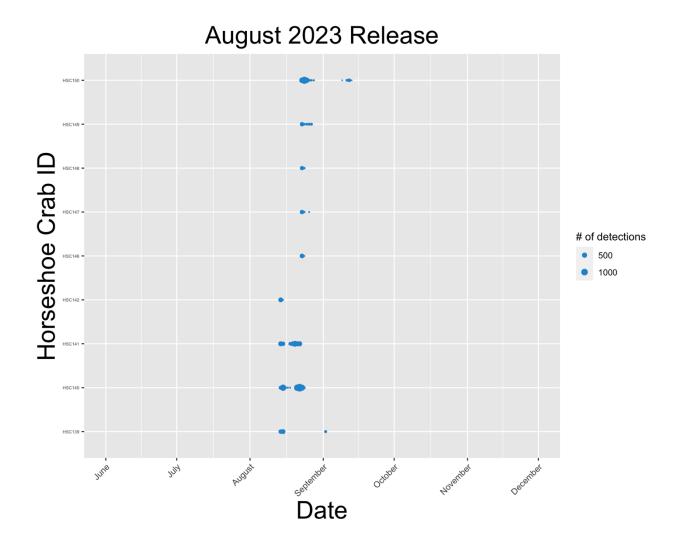

| Date               | Acoustic Tag ID    | Floy Tag ID | Sex    | Carapace Length (mm) | Weight (kg) |
|--------------------|--------------------|-------------|--------|----------------------|-------------|
| 1/6/23             | 1537037            | 5           | Female | 98.0                 | 0.8         |
| 1/6/23             | 1537038            | 3           | Male   | 115.0                | 1.5         |
| 1/6/23             | 1537039            | 6           | Female | 98.8                 | 0.8         |
| 1/6/23             | 1537041            | 7           | Male   | 118.0                | 1.3         |
| 1/6/23             | 1537042            | 8           | Female | 102.2                | 0.9         |
| 1/6/23             | 1537043            | 9           | Male   | 116.0                | 1.6         |
| 1/6/23             | 1537044            | 11          | Female | 87.7                 | 0.6         |
| 1/6/23             | 1537046            | 12          | Male   | 107.0                | 0.9         |
| 1/6/23             | 1537047            | 13          | Female | 89.0                 | 0.5         |
| 1/6/23             | 1537048            |             | Male   | 86.6                 | 0.5         |
| 1/6/23             | 1537050            |             | Male   | 86.0                 | 0.6         |
| 2/1/23             | 1537040            |             | Female | 92.0                 | 0.6         |
| 2/1/23             | 1537045            |             | Male   | 121.0                | 1.5         |
| 2/1/23             | 1537049            |             | Male   | 90.0                 | 0.5         |
| 2/1/23             | 1537051            |             | Male   | 98.0                 | 0.7         |
| 2/1/23             | 1537052            |             | Male   | 104.0                | 1.1         |
| 2/1/23             | 1537053            |             | Male   | 115.0                | 1.4         |
| 2/1/23             | 1537054            |             | Female | 92.0                 | 0.7         |
| 2/1/23             | 1537055            |             | Female | 92.0                 | 0.7         |
| 2/1/23             | 1537056            |             | Female | 96.0                 | 0.7         |
| 2/1/23             | 1537057            |             | Female | 97.0                 | 0.7         |
| 2/6/23             | 1537058            |             | Male   | 110.0                | 1.2         |
| 2/6/23             | 1537059            |             | Female | 93.0                 | 0.6         |
| 2/6/23             | 1537060            |             | Male   | 98.0                 | 0.7         |
| 2/6/23             | 1537061            |             | Female | 102.0                | 0.9         |
| 3/10/23            | 1537062            |             | Male   | 92.0                 | 0.8         |
| 3/10/23            | 1537063            |             | Male   | 97.0                 | 0.8         |
| 3/10/23            | 1537064            |             | Male   | 103.0                | 0.9         |
| 3/10/23            | 1537065            |             | Female | 90.0                 | 0.8         |
| 3/10/23            | 1537066            |             | Male   | 88.0                 | 0.6         |
| 4/12/23            | 1537067            |             | Male   | 128.0                | 1.7         |
| 4/12/23            | 1537068            |             | Male   | 96.0                 | 0.6         |
| 4/12/23            | 1537069            |             | Male   | 99.0                 | 0.7         |
| 4/12/23            | 1537070            |             | Female | 90.0                 | 0.6         |
|                    |                    |             | Male   | 101.0                |             |
| 4/12/23            | 1537071            |             | Female | 84.0                 |             |
| 4/12/23<br>4/12/23 | 1537072<br>1537073 |             | Female | 113.0                | 0.6         |
| 4/12/23            |                    |             |        |                      |             |
| 4/12/23            | 1537074            |             | Male   | 111.0                | 1.1         |
|                    | 1537075            |             | Male   | 91.0                 | 0.8         |
| 4/12/23            | 1537076            |             | Male   | 99.0                 | 0.8         |
| 4/12/23            | 1537077            |             | Female | 90.0                 | 0.7         |
| 4/12/23            | 1537078            |             | Female | 89.0                 | 0.6         |
| 4/12/23            | 1537086            |             | Female | 84.0                 | 0.5         |
| 4/12/23            | 1537080            |             | Female | 86.0                 | 0.5         |
| 4/17/23            | 1537081            |             | Female | 86.0                 | 0.5         |
| 4/17/23            | 1537082            |             | Male   | 84.0                 | 0.6         |
| 4/17/23            | 1537083            |             | Female | 84.0                 | 0.5         |
| 4/17/23            | 1537084            |             | Female | 86.0                 | 0.5         |
| 4/17/23            | 1537085            |             | Female | 91.0                 | 0.6         |
| 4/17/23            | 1537079            | 56          | Female | 97.0                 | 0.8         |

## **Brief Daily Detection Summary Plots**


The following plots are daily detection summaries of all tagged animals for 2023, separated into the months they were released.



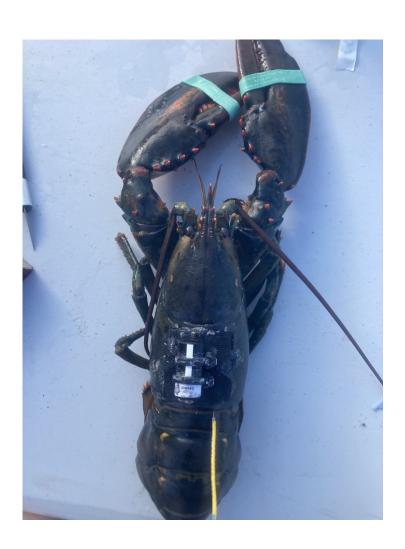



# March/April 2023 Release






Date



#### References

Brousseau, L.J., Sclafani, M., Smith, D.R. and Carter, D.B., 2004. Acoustic-tracking and radio-tracking of horseshoe crabs to assess spawning behavior and subtidal habitat use in Delaware Bay. North American Journal of Fisheries Management, 24(4), pp.1376-1384.

Photos of lobster and horseshoe crab tags used in this study.



