BIOENERGY & THERMAL POWER

Thomas Dalsgaard, Executive Vice President

Meet the Management, 2 February 2017

Thomas Dalsgaard EVP **Bioenergy & Thermal Power** Executive Vice President, Bioenergy & 2011 -Thermal Power DONG Energy, Senior Vice President 2010 - 11 DONG Energy, Vice President 2008 - 10 2004 - 08 IMF, Washington D.C., USA, Senior economist DONG Energy, Head of Management 2003 - 04 and Board Secretariat 2001 – 03 Danish Ministry of Finance, Head of Division 1998 – 01 OECD, Paris, France, Senior economist

1993 – 98 Danish Ministry of Finance, Economist

Ongoing transformation of business model

rightarrow Regulated earnings ightarrow Commodity exposure

Transformation of DK business well underway

1. Adjusted for divested activities

Bio-conversions progressing as planned

Asnæs 6 (25/125)

2019E

Coal

Conversion CHP (MWe/MWth)¹

Herning (77/150)

CoD	2009	
Primary fuel types	Gas	Woo wood

Skærbæk 3 (95/320)

OOD	2017	
Primary fuel types	Natural gas	▶ Wood chips

CoD 2014 Primary fuel types value by Wood pellets

Studstrup 3 (362/513)CoD2016Primary
fuel typesCoalWood pellets

+2020E

Coal

Wood chips

Esbjerg (55/150)

CoD

Primary

fuel types

Avedøre 1 (254/359) CoD 2016 Primary fuel types Coal Wood pellets

1. Biomass capacity after conversions. MWe refers to converted power capacity. MWth refers to converted heat capacity.

CoD

Primary

fuel types

Wood chips

Bioenergy & Thermal Power will exit coal by 2023

Biomass conversions facilitate zero coal from 2023

DONG Energy fuel composition (%)

Coal may be used in force majeure circumstances

First major utility to fully exit coal

- Putting further action behind DONG Energy's vision for leading the energy transformation
- Heat customers support early coal phase-out

Smart Plant Programme: Running the power plant of the future - smart, green and safe

Smart Plant Programme will cover five priority areas

Reduce cost of fuel ownership across the full supply chain from 'cargo to silo'

Improve productivity from office to plant by automating and digitalising processes

Make the most of our talent and build a flexible organisation where skills & expertise brings biggest impact

Be on top of technological advancement and bring in intelligent new tech solutions to daily routines

Better use of data to support timely business decisions across the organization from trading to production floor

The 3-year programme kicked off January 2017

Smart Plant 2020 roadmap:

DUNG energu

REnescience: A growth opportunity in the global waste market

1. Municipal Solid Waste

2. World Bank: A Global Review of Solid Waste Management

Converting household waste to green gas, green power, and recyclables

REnescience Northwich

Value proposition

- High green gas yield, low CO₂ footprint
- Cheaper and more convenient than source separation
- Higher recycling rate than incineration

REnescience Northwich – first commercial plant after successful demonstration in Denmark

Facts about the facility

- 5 MW of baseload electricity generation (supported through Renewable Obligation Certificates)
- · 120,000 tons of mixed waste processed per year
- CoD May 2017 (currently under construction)
- Total CAPEX ~DKK 600 MM

Business case driven by multiple revenue streams Revenue build-up of typical REnescience plant, UK example Illustrative

Size and composition of revenue drivers differ from project to project

Reinforcing REnescience competitiveness through cost-out and recycling-up programmes

Today Sourcing Engineering Technology Other 2021 Target

Cost-out programme - reducing net treatment costs

Today Digestate Inerts 2D materials Salts 2021 Target

Recycling-up programme – increasing recycling rate

On track to deliver on targets set out in IPO

AREA		2015	2016	T (ARGETS FROM IPO PROSPECTUS BASED ON 2015)	CURRENT EXPECTATION
EBITDA	Heat (DKKm)	346 407	407	•	Expected to more than double from 2015 to 2017	•
	Power (DKKm)	-446 (-934 excl. one-offs)	-607	•	Subject to market conditions, underlying improvement over medium term from new heat contracts and enhanced flexibility	٠
	Ancillary services (DKKm)	383	300	•	Relatively stable income going forward	٠
Cash flow	Cash flow (DKKbn)	1.6	-0.6	•	Expecting positive free cash flow from 2018	٠
Volumes	Heat volumes (TWh)	9.3	9.2	•	Stable long-term heat offtake	•
Capacity	Biomass share (%)	19	41	•	60% of heat capacity in 2020 is green	٠

New heat contracts and bio-conversions are key value drivers

CHP 01 Tax advantage advantage 02 Up-front CAPEX contribution from heat customers Тах 03 CHP advantage Fuel costs. variable O&M. etc. Fuel costs. variable O&M, etc. 04 Fixed costs Fixed costs Coal based Biomass based heat price heat price Old heat contract New heat contract

Heat price is regulated by Danish Heat Supply Act

DKK/MWh, Illustrative example

Value drivers from new heat contracts

01.Sharing of tax advantage	Replacing fossil fuels with biomass implies tax savings that can be shared between heat producers and heat custome		
02.Up-front CAPEX contribution from heat customers	Value creation for BTP driven by the wedge between DONG Energy WACC and the regulated interest rate DONG Energy would otherwise receive from heat customers for fully financing the project. Heat customers benefit from the wedge between the regulated interest rate and their financing costs	EBITDA impact	
03.Sharing of CHP advantage	Shared efficiency gain from combined heat and power production		
03.Sharing of CHP advantage 04.Cost sharing	Shared efficiency gain from combined heat and power production Improved cost coverage for heat production plus coverage of loss from forced production		
03.Sharing of CHP advantage 04.Cost sharing Bio-to-power subsidy	Shared efficiency gain from combined heat and power production Improved cost coverage for heat production plus coverage of loss from forced production A premium feed-in subsidy of 150 DKK/MWh for power produced on biomass		

Elsam case

Elsam timeline

- cases brought by competition authorities

2003-2004	ł	Elsam 03-04: Alleged abuse of a dominant position in the form of excessive pricing in the Western Danish market for wholesale electricity in 2003 - 2004
2005	ŀ	\mbox{Elsam} 03-04: DCC1 determined that Elsam had abused its dominant position during 2. half 2003 - 2004
2006	╉┥	Elsam 03-04: DCAT 2 stated that Elsam had abused its dominant position during 2. half 2003 - 2004
2007	╉┥	$\ensuremath{\text{Elsam}}$ 03-04: Decision appealed to DMCHC3. Case is stayed on outcome of Elsam 05-06
2005-2006	╉┥	Elsam 05-06: Alleged abuse of a dominant position in the form of excessive pricing in the Western Danish market for wholesale electricity in 2005-2006
2007	╉┥	Elsam 05-06: DCC1 determined that Elsam had abused its dominant position during 2005 - 2006
2008	┠┥	\mbox{Elsam} 05-06: DCAT2 determined that Elsam had abused its dominant position during 2005 – 2. half 2006
2008	╉┥	Elsam 05-06: Decision appeal to DMCHC3
August 2016	┠┥	Elsam 05-06: DMCHC ³ upholds that Elsam had abused its dominant position during 2005 – 2. half 2006
Dec. 2016	Η	Elsam 05-06: Appeal to Western High Court

1. Danish Competition Council

2. Danish Competition Appeals Tribunal

3. Danish Maritime and Commercial High Court

Pending claims for damages and economic exposure

- Claims for Damages. Based on Elsam 03-04 and 05-06, 1,106 plaintiffs have in November 2007 filed a claim for damages with DMCHC³. The preparation of the case has been restarted after the judgement in Elsam 05-06 from DMCHC³ and is ongoing
- The primary claim for damages amounts to DKK 4.4 billion with addition of interest calculated as per the date of the individual payments of the alleged excessive prices and until the payments have been settled
- Based on what we know so far concerning the plaintiffs' loss calculation, it significantly underestimates Elsam's actual costs of producing power
- · We have claimed dismissal of the entire claims for damages
- As a reaction to the claims for damages, we have currently provisioned DKK 298 million which with addition of interest calculated from the date of the plaintiffs' commencement of legal proceedings against us amounts to DKK 504m as of 1 April 2016. Our provision is based on DCC's¹ estimation of consumer losses in Elsam 03-04 and Elsam 05-06

Key features of bio-conversions

Typical plant modifications

- · BTP manages project development, execution and O&M of bio-conversion projects
- Core competencies in project management, concept design, process chemistry, control & optimisation as well as safety
 management maintained in-house
- · Detailed engineering outsourced

Power is sold day-ahead, intraday and as ancillary services

BTP CHP production is competitive with condensing production

Nordic power plant merit order and demand curve, Illustrative

Price

Bioenergy & Thermal Power well-positioned in ancillary services and power markets

Continuous work to improve plant flexibility Example of initiatives to improve plant flexibility (not exhaustive)

Bypass and heat accumulators	Turbine bypass and heat accumulators to decouple heat and power production
Minimum load	30%
Load gradients	4%/min ⇔ 8%/min (Skærbæk 3)
Minimum load with ancillary services	60 MWe ⇔ 20 MWe (Asnæs 2)

Solid competitive position in DK and NW Europe

- CHP production enables cost-efficient and swift delivery of ancillary services during winter and shoulder periods
- Closure of thermal capacity in the Nordics and the Continent likely to enhance BTP's market position

Diversified biomass sourcing portfolio across geographies and fuels

DONG Energy consumed 1.6 Mt of biomass in 2016 expected to almost double by 2020 Biomass consumption, '000 t¹

1.Energy content per tons biomass: wood chips=10.5 GJ/ton, straw=14.5 GJ/ton, wood pellets=17.5 GJ/ton 2.CIF ARA converted from USD to EUR at respective daily exchange rate

Diversified sources of biomass

Wood pellet origin, 2016

- Mix of contracts with different lengths (10-year, 2-3 year, annual and spot)
- Chips are sourced from Denmark and neighbouring countries, incl. the Baltics

European wood pellet prices have declined in 2016

Historical wood pellet prices, 1-year forward prices, EUR/ton

DONG Energy adheres to strict sustainability criteria

Combustion of biomass from sustainable forestry is CO_2 -neutral

Ensuring sustainable sourcing of biomass Standard of Sustainable Biomass Program (SBP) SBP · Protection of key ecosystems or habitats · Forest productivity and health is maintained eon · Rights of indigenous peoples and local communities engie · Protection of health and safety and basic RWE labor rights drax · Regional carbon stocks are maintained or increased over the medium- to long-term HOFOR · Genetically modified trees are not used VATTENFALL · End-to-end accounting for greenhouse gas emissions

Independent 3rd party auditors certify suppliers through annual audits, recertification every 5 years and carbon accounting from forest to furnace

Substantial CO₂-reduction compared with coal

Across the life-cycle, emissions reduction of ~90%

vs. coal1

1. Source: Life-cycle assessment of wood pellets for energy applications, Aalborg University, the Danish Centre for Environmental Assessment

Under EU regulation, biomass is considered CO₂-neutral

- EU regulation assumes that carbon released when biomass is burned will be re-absorbed through tree growth
- Biomass currently accounts for two-thirds of renewable energy produced in the EU
- EU Commission's current Clean Energy Package contains proposed regulation on biomass sustainability that is broadly aligned with the Danish Industry Agreement and SBP

Policies are supportive of further resource utilisation

- The EU Waste Framework
 Directive set a target of 50%
 recycling of household waste by
 2020
- Proposed EU 'Circular Economy' package includes a target of 65% recycling of household waste by 2030
- Growing number of country-level targets to move away from landfill and increase recycling rates within and outside the EU
- Waste planning and targetsetting takes place at a highly decentralised level

10 largest biomass-fired facilities globally

Biomass plants – capacity¹

MW output

1. For CHP or heat producing plants, the heat capacity is shown, whereas for power producing plants, the electrical output is shown. NOTE: Does not include plants where biomass is not the primary fuel (for example co-firing applications); does not include industrial applications

